PRORAČUN STRUJNOG OPTEREĆENJA VISOKONAPONSKIH KABLOVA USLED UTICAJA TOPLOVODA U BETONSKOM KANALU

M. Tanasković, Honorarni konsultant, Beograd, Srbija*

KRATAK SADRŽAJ

U prošlosti, različiti cenjeni analitički pristupi su bili posvećeni razmatranju ustaljenoj cikličnoj promeni opterećenja. U mnogim slučajevima u praksi, analitički pristupi obezbeđuju dobre odgovore. Ipak, idealizacije uvedene u modelovanju različitih konstrukcionih detalja i materijala, neminovne u analitičkim pristupima, odražavaju se donekle na dobijene rezultate. Detaljno modelovanje kablovskog rova obezbeđuje metoda konačnih elemenata. Model konačnih elemenata, za proračun strujnog opterećenja podzemnih kablova, uzima u obzir isušivanje zemljišta, odvođenje toplote pomoću strujanja sa površine zemlje i efekte zračenja i zagrevanja površine zemlje od Sunca. Cilj ovog članka je da prikaže rezultate proračuna dozvoljenih strujnih opterećenja kablovskih vodova 110 kV sa čvrstim dielektrikom XHE 49-A 3x(1x1000 mm2) 110/64 kV, položenih u zemlju paralelno sa toplovodom u betonskom kanalu, za normalni pogon sa trajnim strujnim opterećenjem. Proračuni su urađeni primenom IEC metode sa zamenom toplovoda ekvivalentnim cilindrom i primenom metode konačnih elemenata. U oba metoda proračuna uvažava se samo da toplovod u betonskom kanalu utiče na energetski kabl, dok se uticaj energetskog kabla na toplovod zanemaruje. Zbog toga, na graničnim površinama betonskog kanala temperatura je modelovana sa konstantnom vrednošću.

Ključne reči: kablovi visokog napona, strujno opterećenje, toplovod u betonskom kanalu, metod konačnih elemenata

ABSTRACT

In the past, various valuable analytical approaches have been elaborated addressing the stationary cyclic variation of load. In most of the cases in practice, the aforementioned approaches provide good answers. However, the idealizations introduced in modelling various structural details and materials, inevitable in analytical approaches, reflect to some extent upon the obtained results. The finite element model, for the calculation of the loading capacity of underground cables, taking into account the soil drying out, heat transfer by convection from the soil surface and radiation and solar heating effects. The aim of this article is to present the results of a calculation of allowed load current of cable lines 110 kV with dielectric of crosslinked polyethylene XHE 49-A 3x(1x1000 mm2) 110/64 kV, laid in the ground parallel with the heat pipelines in concrete duct, for the cables with continuous current for normal operation. Calculations were performed using IEC method with replacement of the heat pipelines in concrete duct with an equivalent cylinder and the finite element method. In both methods of calculation, only the heat pipe in the concrete duct affects the power cable, while the influence of the power cable on the heating system is ignored. Therefore, on the boundary surfaces of the concrete duct the temperature is modelled with a constant value.

Keywords: High Voltage cables, loading capacity, heat pipelines in concrete duct, Finite Element Method

* Dr Miladin Tanasković, dipl. inž. el, Honarni konsultant, Beograd, tel. +381(0)11/3165340, E-mail: tanasfam@gmail.com

1. UVOD

Određivanje uticaja toplovoda u betonskom kanalu na paralelno položen energetski kabl od prvorazrednog je značaja. Toplotni uticaj toplovodnih cevi u betonskom kanalu (magistralni toplovod) prouzrokuje povišenje temperature okolnog zemljišta oko kablova. Ovaj uticaj kao rezultat ima smanjenje maksimalno dozvoljenog strujnog opterećenja visokonaponskih kablova.

U prošlosti, različiti cenjeni analitički pristupi su bili posvećeni razmatranju strujnog opterećenja kod energetskih kablova [1], [2]. Razvijene su analitičke metode za proračun zagrevanja kablovskih snopova položenih u zemlju [3], [4], [5], za trajne i promenljive uslove. U mnogim slučajevima u praksi, pomenuti

pristupi obezbeđuju dobre odgovore. Ipak, idealizacije uvedene u modelovanju različitih konstrukcionih detalja i materijala, neminovne u analitičkim pristupima, odražavaju se donekle na dobijene rezultate. Detaljno modelovanje kablovskog rova obezbeđuje metoda konačnih elemenata. Ovaj metod je bio korišćen za analizu tranzijentnih temperatura usled "step" funkcije opterećenja za kablove položene u izotropnom okruženju [6]. Toplotne analize podzemnih kablova koje su razmatrale samo prenos toplote provođenjem prikazane su u [7]. Takođe, u [8] su prikazani model konačnih elemenata za proračun strujnog opterećenja kablova uzimanjem u obzir efekta provođenja zbog prenosa vlage oko kablova položenih u zemlji. Model konačnih elemenata za proračun strujnog opterećenja podzemnih kablova koji je bio razrađen u [9], uzimao je u obzir i isušivanje zemljišta i prenos toplote strujanjem sa površine zemlje. Glavni doprinos [10] je uključivanje efekata zračenja od Sunca u model konačnih elemenata.

Cilj ovog članka je da prikaže rezultate proračuna dozvoljenih strujnih opterećenja kablovskih vodova 110 kV sa čvrstim dielektrikom XHE 49-A 3x(1x1000 mm²) 110/64 kV, položenih u zemlju paralelno sa toplovodom u betonskom kanalu, za normalni pogon sa trajnim strujnim opterećenjem. Proračuni su urađeni primenom IEC metode sa zamenom toplovoda ekvivalentnim cilindrom i primenom metode konačnih elemenata. U oba metoda proračuna uvažava se samo da toplovod u betonskom kanalu utiče na energetski kabl, dok se uticaj energetskog kabla na toplovod zanemaruje. Zbog toga, na graničnim površinama betonskog kanala temperatura je modelovana sa konstantnom vrednošću.

2. PRORAČUN STRUJNOG OPTEREĆENJA PRIMENOM IEC METODE SA ZAMENOM TOPLOVODA EKVIVALENTNIM CILINDROM

Dozvoljeno trajno (100%) strujno opterećenje usamljenog energetskog kablovskog voda *I* položenog u zemlju bez isušivanja okolnog zemljišta određuje se prema [3, 4] iz:

$$I = \sqrt{\frac{\Delta\Theta - W_d \cdot \left[0, 5 \cdot T_1 + n \cdot \left(T_2 + T_3 + T_4\right)\right]}{R \cdot T_1 + n \cdot R \cdot \left(1 + \lambda_1\right) \cdot T_2 + n \cdot R \cdot \left(1 + \lambda_1 + \lambda_2\right) \cdot \left(T_3 + T_4\right)}},\tag{1}$$

gde je:

I (A) - dozvoljeno trajno strujno opterećenje kablovskog voda (tri jednožilna kabla);

 $\Delta \Theta(\mathcal{C})$ - dozvoljeni priraštaj temperature provodnika iznad temperature okoline;

 $R(\Omega/m)$ - električna otpornost provodnika po jedinici dužine pri naizmeničnoj struji na maksimalnoj radnoj temperaturi;

 W_d (*W/m*) - dielektrični gubici u izolaciji po jedinici dužine;

n - broj provodnika u kablu;

 T_1 (*Km/W*) - toplotna otpornost između provodnika i električne zaštite po jedinici dužine;

 T_2 (*Km/W*) - toplotna otpornost između električne zaštite i armature po jedinici dužine;

 T_3 (*Km/W*) - toplotna otpornost spoljne zaštite kabla po jedinici dužine;

 T_4 (*Km/W*) - toplotna otpornost između površine kabla i sredine koja ga okružuje po jedinici dužine;

 λ_l - količnik (faktor) gubitaka u električnoj zaštiti i gubitaka u provodniku;

 λ_2 - količnik (faktor) gubitaka u armaturi i gubitaka u provodniku.

Isušivanje okolnog zemljišta eliminisano je polaganjem kablovskog voda u specijalnu posteljicu koja sprečava migriranje vlage [11]. Kod jednožilnih visokonaponskih kablova sa izolacijom od umreženog polietilena (XPE, na primer kabl tipa XHE 49 A) je: $T_2 = 0$ i $\lambda_2 = 0$ jer konstruktivno nemaju armaturu. Dozvoljeno trajno (100%) strujno opterećenje tri usamljena jednožilna kabla položena u "trouglastom" snopu (n = 1, $\lambda_2 = 0$, $T_2 = 0$), sa električnim zaštitama koje su kratko spojene i uzemljene na oba kraja kablovskog voda, bez preplitanja (transpozicija - cross bonding), bez isušivanja okolnog zemljišta, na osnovu izraza (1) određuje se iz:

$$\mathbf{I} = \sqrt{\frac{\Delta\Theta - \mathbf{W}_{d} \cdot \left(0, 5 \cdot \mathbf{T}_{1} + \mathbf{T}_{3} + \mathbf{T}_{4}\right)}{\mathbf{R} \cdot \mathbf{T}_{1} + \mathbf{R} \cdot \left(1 + \lambda_{1}\right) \cdot \left(\mathbf{T}_{3} + \mathbf{T}_{4}\right)}}$$
(2)

Izrazi za proračun električne otpornosti provodnika R, dielektričnih gubitaka u izolaciji W_d , kao i toplotnih otpornosti T_1 , T_3 i T_4 dati su u [4].

Za kabl XHE 49-A 1 x 1000/95 mm² 64/110(123) kV spoljni prečnik kabla je d = 90,4 mm i h = 1445 mm. Ostali parametri za proračun strujnog opterećenja su:

 $\begin{aligned} \rho_z &= 1 \ K \cdot m / W; \\ R &= 0,041 \cdot 10^{-3} \ \Omega / m; \\ W_d &= 0,4 \ W / m; \\ \lambda_1 &= 0,262; \end{aligned}$

$$\begin{split} T_1 &= 0,349 \; K \cdot m/W; \\ T_3 &= 0,05 \; K \cdot m/W; \\ T_4 &= 1,729 \; K \cdot m/W. \end{split}$$

U primeru koji se razmatra dozvoljeno trajno (100%) strujno opterećenje usamljenog energetskog kablovskog voda položenog u zemlji prema (2) je:

$$I = \sqrt{\frac{(90-3) - 0.4 \cdot (0.5 \cdot 0.349 + 0.05 + 1.729)}{0.041 \cdot 10^{-3} \cdot 0.349 + 0.041 \cdot 10^{-3} \cdot (1 + 0.262) \cdot (0.05 + 1.729)}} = 900,36 \text{ A}$$

Dozvoljeno trajno (100%) strujno opterećenje energetskog kablovskog voda I_{kt} položenog u "trouglastom" snopu, bez isušivanja okolnog zemljišta, na rastojanju L od betonskog kanala toplovoda (slika 1.) određuje se iz [12]:

$$I_{kt} = \sqrt{\frac{\Delta\Theta - W_{d} \cdot \left(0, 5 \cdot T_{1} + T_{3} + T_{4}\right) - P_{t} \cdot \frac{\rho_{z}}{2 \cdot \pi} \cdot \ln \frac{a_{1}}{a}}{R \cdot T_{1} + R \cdot \left(1 + \lambda_{1}\right) \cdot \left(T_{3} + T_{4}\right)}},$$
(3)

gde su:

 $P_t(W/m)$ - podužne snage toplovoda kada u njegovoj blizini nema drugih toplotnih izvora; a(m) - rastojanje ose toplovoda (ekvivalentnog cilindra) od ose kablovskog voda; $a_1(m)$ - rastojanje ose lika toplovoda od ose kablovskog voda.

Uticaj toplovoda u betonskom kanalu (magistralni toplovod) na paralelno položen elektroenergetski kabl određuje se izračunavanjem podužne snage toplovoda P_t kada se stvarni toplovod ekvivalentira cilindrom prečnika:

$$d_{te} = 4 \cdot \frac{l_1 \cdot l_2}{2 \cdot (l_1 + l_2)} = \frac{2 \cdot l_1 \cdot l_2}{l_1 + l_2} = \frac{2 \cdot 1,9 \cdot 0,82}{1,9 + 0,82} = 1,146m,$$
(4)

gde su $l_1(m)$ i $l_2(m)$ spoljna širina i unutrašnja visina betonskog kanala.

Poprečni presek paralelno položenog toplovoda u betonskom kanalu i kablovskog voda 110 kV prikazan je na slici 1.

Slika 1. Poprečni presek toplovoda u betonskom kanalu i kabla 110 kV

Faktor geometrije ekvivalentnog cilindra je:

$$k_{te} = \frac{2 \cdot h_t}{d_{te}} + \sqrt{\left(\frac{2 \cdot h_t}{d_{te}}\right)^2 - 1} = \frac{2 \cdot 1,65}{1,146} + \sqrt{\left(\frac{2 \cdot 1,65}{1,146}\right)^2 - 1} = 5,579,$$
(5)

gde je $h_t(m)$ dubina ose toplovoda u betonskom kanalu.

Ambijentni uslovi i temperatura spoljnog zida betonskog kanala toplovoda kada u njegovoj blizini nema drugih toplotnih izvora su prema [13]:

- temperatura vazduha $\mathcal{G}_{v} = -3 \,^{\circ}C$,
- temperatura zemlje na dubini polaganja kabla i toplovoda $\vartheta_z = 3 \ \mathcal{C}$ i
- temperatura spoljnog zida betonskog kanala toplovda $\mathcal{G}_t = 29.4 \ ^{\circ}C.$

Nadtemperatura spoljnog zida betonskog kanala toplovoda kada u njegovoj blizini nema drugih toplotnih izvora je:

$$\Delta \mathcal{G}_{tz} = \mathcal{G}_t - \mathcal{G}_z = 29,4 - 3 = 26,4 \text{ °C.}$$
(6)

Sada je podužna snaga toplovoda [12]:

$$P_{t} = \frac{2 \cdot \pi \cdot \Delta \mathcal{G}_{tz}}{\rho_{z} \cdot k_{te}} = \frac{2 \cdot \pi \cdot 26.4}{1 \cdot \ln 5.579} = 96.5 \frac{W}{m} \,. \tag{7}$$

Rastojanje ose toplovoda (ekvivalentnog cilindra) od ose kablovskog voda je:

$$a = \sqrt{\left(L + \frac{l_1}{2}\right)^2 + \left(h_t - h\right)^2} = \sqrt{\left(1, 0 + \frac{1,9}{2}\right)^2 + \left(1,65 - 1,445\right)^2} = 1,961m.$$
(8)

Rastojanje ose lika toplovoda od ose kablovskog voda je:

$$a_{1} = \sqrt{\left(L + \frac{l_{1}}{2}\right)^{2} + \left(2 \cdot h_{t} - h\right)^{2}} = \sqrt{\left(1, 0 + \frac{1, 9}{2}\right)^{2} + \left(2 \cdot 1, 65 - 1, 445\right)^{2}} = 2,695m.$$
(9)

U primeru koji se razmatra dozvoljeno trajno (100%) strujno opterećenje energetskog kablovskog voda I_{kt} položenog u zemlji na rastojanju 1,0 m od betonskog kanala toplovoda prema (3) je:

$$I_{kt} = \sqrt{\frac{(90-3) - 0.4 \cdot (0.5 \cdot 0.349 + 0.05 + 1.729) - 96.5 \cdot \frac{1}{2 \cdot \pi} \cdot \ln \frac{2.695}{1.961}}{0.041 \cdot 10^{-3} \cdot 0.349 + 0.041 \cdot 10^{-3} \cdot (1+0.262) \cdot (0.05 + 1.729)}} = 874.49 \, \text{A} \cdot \frac{1}{2 \cdot \pi} \cdot \ln \frac{1}{2 \cdot \pi} \cdot$$

Dozvoljeno strujno opterećenje usamljenog kablovskog voda 110 kV proračunato IEC metodom sa zamenom toplovoda ekvivalentnim cilindrom veće je za 3% u odnosu na kablovski vod 110 kV paralelno položen sa betonskim kanalom toplovoda udaljenim 1 m.

3. PRORAČUN STRUJNOG OPTEREĆENJA PRIMENOM METODE KONAČNIH ELEMENATA (MKE)

3.1 Jednačina provođenja toplote

Maksimalno dozvoljeno trajno strujno opterećenje kablovskog voda 110 kV, određuje se primenom metode konačnih elemenata na osnovu proračuna raspodele temperatura u i oko kablovskog voda za slučaj stacionarnog prenosa toplote u dvodimenzionalnoj oblasti sa homogenim i izotropnim toplotnim karakteristikama materijala [9], [14]:

$$k \cdot \nabla^2 \mathcal{G} = -\frac{Q}{\rho \cdot c} , \qquad (10)$$

gde je Q unutrašnji izvor toplote po jedinici zapremine, k je koeficijenat toplotne provodnosti, ρ je gustina, i c je specifična toplota. Rešenje jednačine stacionarnog provođenja toplote sa pridruženim graničnim uslovima daje vrednost nepoznate temperature. Najčešći slučajevi graničnih uslova su definisana temperatura površine,

definisan površinski protok toplote, razmena toplote strujanjem (konvekcijom) i razmena toplote zračenjem (radijacijom). Granični uslovi definisani razmenom toplote zračenjem su po prirodi nelinearni, i nelinearne jednačine se moraju rešiti iterativno. Da bi se izbegle iteracije, koje je korektno koristiti za nelinearnosti, u [10] je predložena jedna linearna aproksimacija za modelovanje zračenja toplote sa Sunca.

3.2 Formulacija konačnim elementima

Opšti oblik jednačine stacionarnog provođenja toplote za oblast koja se razmatra, podeljenu u mrežu konačnih elemenata sa *N* čvorova, je [9, 10, 14]

$$[K][\vartheta] = [R], \tag{11}$$

gde je: $[\mathcal{G}(t)]$ N dimenzionalni vektor kolona temperatura čvorova, [K] N x N matrica toplotne provodnosti, strujanja i zračenja i [R(t)] N dimenzionalni vektor toplotnih opterećenja koji potiče od unutrašnjeg toplotnog izvora, površinskog strujanja, zračenja i zagrevanja od Sunca. Parametri matrica u (11) su:

$$[K] = [K_c] + [K_h] + [K_r]$$
(12)

$$[R] = [R_{Q}] + [R_{h}] + [R_{r}] + [R_{s}]$$
(13)

gde se indeksi c, h, r i s u (12) i (13) odnose na provođenje, strujanje, zračenje i zagrevanje od Sunca, respektivno. Indeks Q odnosi se na unutrašnju proizvodnju toplote u elementu. Džulovi gubici u faznim provodnicima i metalnim ekranima su uzeti pri proračunu, kao i dielektrični gubici u izolaciji.

Emitovana toplota sa Sunca na površinu Zemlje razmatra se kao maksimalna dnevna vrednost za mesec u godini za koji se radi proračun. Ova toplota se delimično apsorbuje od tela koja su izložena. Konstanta apsorbcije tela definiše stepen apsorbcije. Za sivo obojenu asfaltnu površinu ova konstanta jednaka je $\alpha_0 = 0.80$.

U ovoj analizi korišćeni su trougaoni konačni elementi. Matrice koje figurišu u (11) – (13) dobijene su transformacijom korespodentnih relacija o međusobnim odnosima za elemente napisane za njihove čvorove u lokalnim koordinatama prema šemi označavanja cele mreže. Izrazi (12) i (13) u njihovom opštem obliku su važeći samo za granične elemente sa ivicama na površini trotoara. Za sve ostale čvorove samo $[K_c]$ i $[R_Q(t)]$ na desnoj strani ovih izraza su matrice sa ne nula elementima. Temperature čvorova udaljenih od kablova su fiksirane na predpostavljenoj vrednosti temperature ambijenta.

Koeficijenti matrica u jednačinama (11), (12) i (13) za trougaone elemente, u njihovim lokalnim koordinatama, su kao one date u [6, 9, 14]. One su kompletirane sa izrazima za zračenje i zagrevanje od Sunca [10]:

$$[K_c] = kdS[B]^T[B]$$
⁽¹⁴⁾

$$[B] = \frac{1}{2S} \begin{bmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
(15)

$$b_1 = y_2 - y_3, \quad b_2 = y_3 - y_1, \quad b_3 = y_1 - y_2$$

$$c_1 = x_2 - x_3, \quad c_2 = x_3 - x_1, \quad c_3 = x_1 - x_2$$
(16)

$$[K_{h}] = \frac{1}{6} dh l_{12} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(17)

$$[K_r] = \frac{1}{6} dg_0 l_{12} \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$
(18)

$$[R_{\varrho}] = \frac{1}{3}Q(t)dS\begin{bmatrix}1\\1\\1\end{bmatrix}$$
(19)

$$[R_{h}(t)] = \frac{1}{2} \mathcal{P}_{e}(t) dh l_{12} \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
(20)

$$[R_{r}(t)] = \frac{1}{2} \vartheta_{e}(t) g_{01} \sigma \varepsilon_{0} dl_{12} \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$$
(21)
$$[R_{s}] = \frac{1}{2} \alpha_{0} E dl_{12} \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}.$$
(22)

U (14) - (22) ρ i *c* su gustina i specifični toplotni kapacitet materijala, *S* i *d* su površina trougla i aksijalna dužina kablovske deonice, *k* i *h* su koeficijenti provođenja i strujanja, *x_k* i *y_k* , *k*=1,2,3, su površinske pravougaone koordinate čvorova trougaonih elemenata. *l*₁₂ je dužina ivice trougla koja spaja čvorove 1 i 2, *Q(t)* je izvor toplote unutar elementa, $\mathcal{P}_e(t)$ je temperatura vazduha, i α_0 je koeficijent apsorbcije površine trotoara. Kao što se može videti iz gornjih izraza, svi članovi u (14) i (17) do (22) su proporcionalni sa *d* i ovi izrazi važe za sve vrednosti ovog parametra. Usvojena vrednost u ovoj analizi bila je *d* = 1 *m*.

U izvođenju izraza navedenih iznad, predpostavili smo da je razmena toplote strujanjem i zračenjem od Sunca kod trougaonih elemenata kroz njihovu ivicu koja spaja čvorove 1 i 2.

4. PRIMENA

4.1 Podaci o toplovodnim cevima i kablu

Tabela 1. prikazuje sve relevantne podatke o kablu, toplovodnim cevima i rovu. Kablovska posteljica je načinjena od specijalne mešavine koja sprečava isušivanje.

Koeficijenat strujanja na površini zemlje je $h = 5 W/(K m^2)$ kao u [6]. Makimalno dozvoljena temperatura provodnika za ciklično opterećenje je $\mathcal{G}_m = 90 \ ^0C$. Džulovi gubici provodnika i bakarnog ekrana na \mathcal{G}_m su 0,0408 x $10^{-2} I^2$ i 0,0271 x $10^{-2} I^2$, dok su dielektrični gubici na naznačenom naponu jednaki 1,193, respektivno, gde su svi gubici iskazani u W/m. I(t) je efektivna vrednost trajnog strujnog opterećenja kabla.

Prikazani model konačnih elemenata primenjen je da se odredi strujno opterećenje trofaznog 110kV kablovskog sistema sa čvrstim dielektrikom u formaciji "detelina" koji je postavljen na rastojanju 1,0 m od toplovodnih cevi u betonskom kanalu (Sl.1.).

Tabela 1. Podaci o relevantnim materijalima

	Koeficijenat provođenja	Gustina	Specifična toplota
Materijal	k	ρ	с
-	W/(Km)	kg/dm ³	$(J/(Kkg))x10^{3}$
Aluminijumski provodnik	220	2,70	0,919
Izolacija	0,286	0,93	3,978
Bakarni ekran	385	8,92	0,393
Spoljni plašt	0,286	0,92	2,610
Specijalna posteljica	1,219	1,95	1,026
Beton	1,111	2,20	0,832
Asfalt	0,605	2,10	921
Okolno zemljište	0,83/0,4	1,49	1,054
Čelik	46	7,8	0,485
Voda	0,6	1,0	4,186
Neimpregnisana kamena vuna	0,04	0,1	1680

4.2 Mreže konačnih elemenata

Slika 2. prikazuje mrežu konačnih elemenata trofaznog sistema 110 kV kablova.

Sl. 2 Mreža konačnih elemenata 110 kV trofaznog sistema kablova.

Slika 3. prikazuje mrežu konačnih elemenata za toplovodne cevi u betonskom kanalu. Mere na slikama 2. i 3. su u njihovim lokalnim koordinatama.

Sl. 3 Mreža konačnih elemenata toplovodnih cevi u betonskom kanalu.

Slika 4. prikazuje mrežu konačnih elemenata za kablove i toplovodne cevi u betonskom kanalu.

Sl. 4. Mreža konačnih elemenata za kablove i toplovodne cevi u betonskom kanalu.

4.3 Rezultati proračuna

Proračuni su urađeni za minimalno rastojanje trofaznog kablovskog sistema i betonskog kanala toplovoda od *1,0 m* zbog potrebnog prostora za eventualne intervencije bilo na kablovima, bilo na toplovodu.

Kod proračuna uticaja toplovoda u betonskom kanalu na kablovski vod toplovod se modeluje sa Dirichleovim uslovima na bočnoj strani betonskog kanala bližoj kablovskom vodu (tačke 262 - 269 u mreži konačnih elemenata sa slike 4.) sa temperaturom od 29,4 °C. Zbog ovakvog modelovanja toplovoda ne uvažava se prenos toplote zračenjem sa toplovodnih cevi na betonski kanal.

Proračunate vrednosti strujnog opterećenja primenom IEC metode i MKE date su u Tabeli 2.

Tabela 2. Proračunate vrednosti dozvoljenog trajnog strujnog opterećenja

	IEC	MKE
Način polaganja kabla	Dozvoljena struja	Dozvoljena struja
	[A]	[A]
Usamljeni kablovski vod	900,4	930,0
Kablovski vod na 1,0 m od betonskog kanala	874,5	910,0

5. ZAKLJUČAK

Dozvoljeno trajno strujno opterećenje trofaznog kablovskog sistema udaljenog 1,0 m od betonskog kanala toplovoda, u odnosu na usamljeni kablovski vod, manje je za oko 3 % kod IEC metode i 2,2 % kod MKE.

Uticaj toplovoda u betonskom kanalu na trofazni kablovski sistem kvantitativno se valorizuje na isti način i analitičkim i numeričkim pristupom.

Proračunate vrednosti dozvoljenog strujnog opterećenja MKE veće su od proračunatih vrednosti primenom IEC metode za oko 3,3% kod usamljenog kabla, odnosno za oko 4% kod kabla na udaljenu 1 m od toplovoda.

6. LITERATURA

- [1] G. Mainka, "Berechung der Belastbarkeit von in Erde verlegten Starkstromkabeln, Unter Berücksichtigung von Belastungsfaktor und Bodenaustrocknung", *ETZ-A*, vol. 92, No 3, pp.125-130, 1971.
- [2] L. Heinhold, *Power Cables and Their Applications*, Third Edition, Siemens Aktiengeselschaft, Erlangen, 1990.
- [3] F. Winkler, Strombelstbarkeit von Starkstromkabeln in Erde bei Berücksichtigung der Bodenaustrocknung und eines Tageslastspieles, ETZ Report 13, VDE Verlag, Berlin, 1978.
- [4] IEC 60287/2006: Calculation of the continuous current rating of cables (100% load factor).
- [5] IEC 60853-2/1989-07: Calculation of the cyclic and emergency current rating of cables.
- [6] N. Flatabo, "Transient heat conduction problems in power cables solved by the finite element method", *IEEE PES Summer Meeting*, No T 72 508-0, San Francisco, July 9-14, 1972.
- [7] D. Mushamalirwa, N. Germay, and J. C. Streffens, "A 2-D finite element mesh generator for thermal analysis of underground power cables", *IEEE Trans. on Power Delivery*, vol.3 No.1, pp. 62-68, January 1988.
- [8] G. J. Anders, H. S. Radhakrishna, "Power cable thermal analysis with consideration of heat and moisture transfer in the soil", *IEEE Trans. Power Delivery*, vol.3, No.4. pp.1280-1288, October 1988.
- [9] J. Nahman, and M. Tanaskovic, "Determination of the current carrying capacity of cables using the finite element method", *Electric Power Systems Research* vol. 61, pp.109-117, 2002.
- [10] J. Nahman, M. Tanaskovic "Calculation of the ampacity of high voltage cables by accounting for radiation and solar heating effects using FEM". Article first published online: 14 DEC 2011. DOI: 10.1002/etep.660. Copyright © 2011 John Wiley & Sons.
- [11] Tehnička preporuka br.3 ED Srbije: "Osnovni tehnički zahtevi za izbor i montažu energetskih kablova i kablovskog pribora u elektrodistributivnim mrežama 1 kV, 10 kV, 20 kV, 35 kV i 110 kV", V-o izdanje, novembar 2012. godina.
- [12] D. Tasić: "Osnovi elektroenergetske kablovske tehnike Zbirka zadataka", SXPRINTCOPY, Niš, 2003.
- [13] "Merenja temperatura u zemlji pored toplovoda", JKP "Beogradske elektrane" Beograd, 1991.
- [14] K. Huebner, and E. Thornton, The Finite Element Method for Engineers, J. Wiley & Sons, New York, 1982.